
Review of Linear Algebra for the Final

You can fill in this empty block to summarize the course contents that are not
listed in this file.

Additional Notes Summarized by Yourself

A matrix is in Reduced Row Echelon Form if it satisfies the following 4 conditions

1. All zero rows are at the bottom.

2. The first non-zero entry of every non-zero row is a 1 (leading one).

3. Leading ones go from left to right.

4. All entries above and below any leading one are zero.

If a matrix satisfies only the first 3 conditions above then we say it is in Row
Echelon Form (REF).

Reduced Row Echelon Form (RREF)

Step 1: Begin with the leftmost nonzero column. This is a pivot column.
The pivot position is at the top.

Step 2: Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.

Step 3: Use row replacement operations to create zeros in all positions
below the pivot.

Step 4: Cover (or ignore) the row containing the pivot position and cover
all rows, if any, above it. Apply steps 1 to 3 to the submatrix that
remains. Repeat the process until there are no more nonzero rows
to modify.

Step 5: Backward phase. Beginning with the rightmost pivot and working
upward and to the left, create zeros above each pivot. If a pivot
is not 1, make it 1 by a scaling operation.

Steps 1-4 produce a matrix in row echelon form (REF). A fifth step produces a
matrix in reduced row echelon form (RREF).

The Row Reduction Algorithm

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column, that is, if and only if an echelon form of the
augmented matrix has no row of the form

[
0 · · · 0 b

]
with b nonzero.

If a linear system is consistent, then the solution set contains either
(i) a unique solution, when there are no free variables, or
(ii) infinitely many solutions, when there is at least one free variable.

Existence and Uniqueness Theorem
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1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix
in echelon form. Decide whether the system is consistent. If there is no
solution, stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in step
3 .

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

Using Row Reduction to Solve a Linear System

An equation in the form of Ax = b is called a matrix equation.
Theorem: If A is an m × n matrix, with columns a1, . . . ,an, and if b is in

Rm, the matrix equation

Ax = b

has the same solution set as the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

which, in turn, has the same solution set as the system of linear
equations whose augmented matrix is[

a1 a2 · · · an b
]

Theorem: Let A be an m × n matrix. Then the following statements are
logically equivalent.

1. For each b in Rm, the equation Ax = b has a solution.

2. Each b in Rm is a linear combination of the columns of A.

3. The columns of A span Rm.

4. A has a pivot position in every row.

5. T (x) = Ax maps Rn onto Rm

The Matrix Equation Ax = b

Given vectors v1,v2, . . . ,vp in Rn and given scalars c1, c2, . . . , cp, the vector y
defined by y = c1v1 + · · ·+ cpvp is called a linear combination of v1, . . . ,vp with
weights c1, . . . , cp.
If v1, . . . ,vp are in Rn, then the set of all linear combinations of v1, . . . ,vp is
denoted by Span{v1, . . . ,vp}

Linear Combination and Span

Definition: A system of linear equations is said to be homogeneous if it can
be written in the form Ax = 0, where A is an m× n matrix and
0 is the zero vector in Rm.

Theorem: The homogeneous equation Ax = 0 has a nontrivial solution
⇐⇒ the equation has at least one free variable

Homogeneous Linear Systems

Summary: Writing a solution set (of a consistent system) in parametric vector
form

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free vari-
ables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries)
using the free variables as parameters.

Parametric Vector Form

Definition: A set v1,v2, . . . ,vp of vectors in Rn is said to be linearly indepen-
dent if the only solution to the equation

c1v1 + c2v2 + · · ·+ cpvp = 0

is c1 = c2 = · · · = cp = 0. Otherwise the vectors are called linearly
dependant (which also means that at least one of them can be
written as a linear combination of the others).

Theorems: 1. A set containing only one vector v is linearly independent if
and only if v is not the zero vector.
2. A set of two vectors {v1,v2} is linearly dependent if at least
one of the vectors is a multiple of the other.
3. An indexed set S = {v1, . . . ,vp} of two or more vectors is
linearly dependent if and only if at least one of the vectors in S is
a linear combination of the others.
4. If a set contains more vectors than there are entries in each
vector, then the set is linearly dependent. That is, any set
{v1, . . . ,vp} in Rn is linearly dependent if p > n.
5. If a set S = {v1, . . . ,vp} in Rn contains the zero vector, then
the set is linearly dependent.

Linear Independence
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Let A,B, and C be matrices of the same size, and let r and s be scalars.

• A+B = B +A

• r(A+B) = rA+ rB

• (A+B) + C = A+ (B + C)

• (r + s)A = rA+ sA

• A+ 0 = A

• r(sA) = (rs)A

Sums and Scalar Multiples

Let A be an m × n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

• A(BC) = (AB)C (associative law of multiplication)

• A(B + C) = AB +AC (left distributive law)

• (B + C)A = BA+ CA (right distributive law)

• r(AB) = (rA)B = A(rB) for any scalar r

• ImA = A = AIn (identity for matrix multiplication)

Properties of Matrix Multiplication

Definition: Given an m×n matrix A, the transpose of A is the n×m matrix,
denoted by AT , whose columns are formed from the corresponding
rows of A.

Properties: -
(
AT

)T
= A

- (A+B)T = AT +BT

- For any scalar r, (rA)T = rAT

- (AB)T = BTAT

Transpose of a Matrix

A transformation (or function or mapping) T from a vector space V into a vector
space W is a rule that assigns to each vector x in V a vector T (x) in W .

The set V is called the domain of T , and W is called the codomain of T .
For x in V , the vector T (x) in W is called the image of x.

The set of all images T (x) is called the range of T .

The kernel of such a T is the set of all u in V such that T (u) = 0 (the zero vector
in W ).

Transformation, Domain, Codomain, Image and Range

Definition: A transformation (or mapping) T is linear if
(1) T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
(2) T (cu) = cT (u) for all scalars c and all u in the domain of T .

Properties: If T is a linear transformation, then
(1) T (0) = 0
(2) T (c1v1 + · · ·+ cpvp) = c1T (v1) + · · ·+ cpT (vp)

Linear Transformations

Let T : Rn → Rm be a linear transformation. The standard matrix for the linear
transformation T is

A =
[
T (e1) · · · T (en)

]
where ej is the j th column of the identity matrix in Rn. A is the m × n matrix
and

T (x) = Ax for all x in Rn.

Examples: - Counterclockwise rotation about the origin for a positive angle

φ:

[
cosφ − sinφ
sinφ cosφ

]
- Reflection through the x1-axis:

[
1 0
0 −1

]
- Reflection through the line x2 = x1:

[
0 1
1 0

]

Standard Matrix for the Linear Transformation

Onto: - A mapping T : Rn → Rm is said to be onto Rm if each
b in Rm is the image of at least one x in Rn. This is an
existence question.
- Let A be the standard matrix for T , then T maps Rn onto
Rm if and only if the columns of A span Rm (if and only if
A has a pivot position in every row).

One-to-One: - A mapping T : Rn → Rm is said to be one-to-one if each
b in Rm is the image of at most one x in Rn. This is a
uniqueness question.
- T is one-to-one if and only if the equation T (x) = 0 has
only the trivial solution.
- Let A be the standard matrix for T , then T is one-to-one
if and only if the columns of A are linearly independent.

Onto and One-to-One Linear Transformations
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Suppose the set B = {b1, . . . ,bp} is a basis for a subspace H. For each x in H,
the coordinates of x relative to the basis B are the weights c1, . . . , cp such that
x = c1b1 + · · ·+ cpbp, and the vector in Rp

[x]B =

 c1
...
cp


is called the coordinate vector of x (relative to B ) or the B-coordinate vector of
x.

Coordinate Systems

Definition: Given a square matrix A its inverse (if it exists) is the matrix
denoted by A−1 such that AA−1 = A−1A = I.

Find A−1: (1) If the matrix is a 2× 2 matrix, we use the formula[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]

(2) For a matrix of higher dimensions, row reduce the augmented
matrix [A I] to get

[
I A−1

]
. If the matrix is not invertible, we

will not get the identity on the left side after applying the row
reduction process.
(3) We can also use the formula

A−1 = 1
detA


C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

...
C1n C2n · · · Cnn

 = 1
detA adjA,

where Cji is a cofactor of A.
In particular, we have the (i, j)-entry of A−1 given by

(A−1)i,j =
1

det(A)
Cj,i.

Properties: If A is an invertible n× n matrix, then

• then A−1 is invertible and
(
A−1

)−1
= A

• if B is n × n invertible, then so is AB, and (AB)−1 =
B−1A−1

• AT is also invertible and
(
AT

)−1
=

(
A−1

)T
• The Invertible Matrix Theorem (next box).

The Inverse of a Matrix

Let A be a square n× n matrix. Then the following statements are equivalent.

1. A is an invertible matrix.

2. A is row equivalent to the n× n identity matrix.

3. A has n pivot positions.

4. The equation Ax = 0 has only the trivial solution.

5. The columns of A form a linearly independent set.

6. The linear transformation x 7→ Ax is one-to-one.

7. The equation Ax = b has at least one solution for each b in Rn.

8. The columns of A span Rn.

9. The linear transformation x 7→ Ax maps Rn onto Rn.

10. There is an n× n matrix C such that CA = I.

11. There is an n× n matrix D such that AD = I.

12. AT is an invertible matrix.

13. The columns of A form a basis of Rn.

14. ColA = Rn.

15. rankA = n.

16. dimNulA = 0.

17. NulA = {0}.

18. detA ̸= 0.

19. The number 0 is not an eigenvalue of A.

The Invertible Matrix Theorem
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Minor: Given An×n, the minor of entry ij is denoted by Aij and is
the determinant of the matrix obtained from A by removing
row i and column j.

Cofactor: Cij = (−1)i+j detAij

Determinant: Given an n× n matrix A(n ⩾ 2)

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

by expanding along the ith row.

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

by expanding along the jth column.
Properties: Given an n× n matrix A,

• if A has a zero row or zero column then det(A) = 0.

• if we get matrix B by interchanging two rows of A
then det(B) = −det(A).

• if we get matrix B by multipying one row of A by
k ̸= 0 then det(B) = k det(A).

• if we get matrix B by adding a multiple of a row to
another of matrix A then det(B) = det(A)

• det(kA) = kn det(A)

• det
(
AT

)
= det(A)

• det(AB) = det(A) det(B)

• det
(
A−1

)
=

1

det(A)

Determinant

Definition: A vector space is a non-empty set V of objects, called vectors, on
which are defined two operations, called addition and multiplica-
tion by scalars (real numbers), subject to the ten axioms listed
below. The axioms must hold for all vectors u,v, and w in V and
for all scalars c and d.
1. The sum of u and v, denoted by u+ v, is in V .
2. u+ v = v + u.
3. (u+ v) +w = u+ (v +w).
4. There is a zero vector 0 in V such that u+ 0 = u.
5. For each u in V , there is a vector −u in V such that
u+ (−u) = 0.

6. The scalar multiple of u by c, denoted by cu, is in V .
7. c(u+ v) = cu+ cv.
8. (c+ d)u = cu+ du.
9. c(du) = (cd)u.
10. 1u = u.

Examples: 1. The spaces Rn, where n ≥ 1.
2. The set Pn of polynomials of degree at most n, where n ≥ 0.
3. The set Mm×n of all m × n matrices with real entries, where
m and n are positive integers.
4. The set of all real-valued functions defined on a set D.

Vector Spaces

Definition: A subspace of a vector space V is a subset H of V that has three
properties:
1. The zero vector of V is in H.
2. H is closed under vector addition. That is, for each u and v
in H, the sum u+ v is in H.
3. H is closed under multiplication by scalars. That is, for each
u in H and each scalar c, the vector cu is in H.

Examples: 1. In every vector space V , the subsets {0} and V are subspaces.
2. A line through the origin in R2 or R3.
3. A plane through the origin in R3. For example, the solutions
to the homogeneous equation 3x+4y+5z = 0 is a plane through
the origin in R3.
4. All polynomials in Pn such that p(a) = 0 for some fixed a ∈ R
and positive integer n.
5. The set of all 3× 3 symmetric matrices. Note we say an n× n
matrix A is said to be symmetric if AT = A. (Exercise 7 in the
Lecture Notes §4.1).

Subspaces
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Non-Examples: 1. A line in R2 or R3 not containing the origin.
2. A plane in R3 not containing the origin. For example, the
solutions to the non-homogeneous equation 3x+4y+5z = 6
is a plane not containing the origin in R3. It is not a subs-
pace of R3.
3. The first quadrant in R2.
4. All polynomials in Pn such that p(a) = 3 for some fixed
a ∈ R and positive integer n.

Subspaces (continued)

Basis: A basis for a subspace H of a vector space V is a linearly inde-
pendent set in H that spans H.

Dimension: If a vector space V is spanned by a finite set, then V is said to be
finite-dimensional, and the dimension of V , written as dimV , is
the number of vectors in a basis for V .

Basis, Dimension

ColA: - The column space of a matrix A is the set ColA of all linear
combinations of the columns of A.
- Col A is a subspace of Rm if A is m× n.
- The pivot columns of a matrix A form a basis for the column
space of A.
- rankA = dimColA

NulA: - The null space of a matrix A is the set Nul A of all solutions of
the homogeneous equation Ax = 0.
- To test whether a given vector v is in Nul A, just compute Av
to see whether Av is the zero vector.
- To find a basis for NulA, we solve the equation Ax = 0 and
write the solution for x in parametric vector form. The vectors in
the parametric form give us a basis for NulA.
- The nullity of a matrix A is the dimension of its NulA.

RowA: - The set of all linear combinations of the row vectors of A is called
the row space of A, and is denoted by RowA.
- Row A is a subspace of Rn if A is m× n.
- If two matrices A and B are row equivalent, then their row spa-
ces are the same. If B is in echelon form, the nonzero rows of B
form a basis for the row space of A as well as for that of B.
- RowA = ColAT

- dim Row A = dimColA = rankA

Rank Thm: rankA+ nullity A = number of columns in A

ColA, NulA, RowA

Definition: A set v1,v2, . . . ,vp of vectors in a vector space V is said to be
linearly independent if the only solution to the equation

c1v1 + c2v2 + · · ·+ cpvp = 0

is c1 = c2 = · · · = cp = 0. Otherwise the vectors are called linearly
dependant (which also means that at least one of them can be
written as a linear combination of the others).

Linearly Independent Sets

Definition: A scalar λ is called an eigenvalue of A if |A− λI| = 0 (characte-
ristic equation).
An eigenvector associated with the eigenvalue λ is a nonzero vec-
tor v such that (A− λI)v = 0.

Eigenspace: Given a particular eigenvalue λ of the n by n matrix A, the set
E = {v : (A− λI)v = 0} is called the eigenspace of A associated
with λ.

Properties: - If Ax = λx, then Akx = λkx for any positive integer k. So λk is
an eigenvalue for Ak. Check Practice Problems # 2 on Page 279.
Solutions are on Page 282.
- If Ax = λx, then sλ is an eigenvalue of sA for any real number
s.
- The eigenvalues of a triangular matrix are the entries on its main
diagonal.
- If v1, . . . ,vr are eigenvectors that correspond to distinct eigen-
values λ1, . . . , λr of an n× n matrix A, then the set {v1, . . . ,vr}
is linearly independent.

Eigenvalues and Eigenvectors

Let A be a 2× 2 matrix, then its characteristic polynomial is

λ2 − tr(A)λ+ det(A)

Remark: Recall the trace of a square matrix A is the sum of the
diagonal entries in A and is denoted by trA.

The Characteristic Polynomial of a 2× 2 matrix

6



Definition: If A and B are n× n matrices, then A is similar to B if there is
an invertible matrix P such that P−1AP = B, or, equivalently,
A = PBP−1.

Properties: - Any square matrix A is similar to itself. (Reflexivity)
- A is similar to B if and only if B is similar to A. (Symmetry)
- If A is similar to B and B is similar to C, then A is similar to
C. (Transitivity)
- If n× n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with
the same multiplicities).
- If A and B are similar, then detA = detB (Example 4 in §5.2).
- Similar matrices have the same rank.

Warnings: - It is not true that if two matrices have the same eigenvalues
implies they are similar. Check the Lecture Notes §5.2 for an
example.
- Similarity is not the same as row equivalence. Row operations
on a matrix usually change its eigenvalues.

Similarity

Definition: A square matrix A is said to be diagonalizable if A is simi-
lar to a diagonal matrix, that is, if A = PDP−1 for some
invertible matrix P and some diagonal matrix D.

Properties: - An n× n matrix A is diagonalizable if and only if A has
n linearly independent eigenvectors.
- An n× n matrix with n distinct eigenvalues is diagonali-
zable.
- A symmetric matrix is always diagonalizable.

Diagonalizing A: Check Example 3 in Lecture Notes §5.3 as an exercise.
Step 1. Find the eigenvalues of A
Step 2. Find n linearly independent eigenvectors of A if A
is n× n. (A is not diagonalizable if this step fails.
Step 3. Construct P with the eigenvectors found in Step 2.
Step 4. Construct the diagonal matrix D with the the cor-
responding eigenvalues from columns of P .

Warnings: - When A has fewer than n distinct eigenvalues, it is still
possible to diagonalize A. (Example 3 in Lecture Notes
§5.3)

- Diagonalizable ̸⇒ Invertible. For example,

[
1 0
0 0

]
is

diagonalizable but not invertible.

- Invertible ̸⇒ Diagonalizable. For example,

[
1 1
0 1

]
is

invertible but not diagonalizable.
- Diagonalizable ̸⇒ no zero eigenvalues. For example,[

1 0
0 0

]
is diagonalizable and 0 is an eigenvalue.

Diagonalization

Constant Coeff. Homogeneous: x′ = Ax

Solution: x = c1x1 + c2x2 + · · · ,
where xi are fundamental solutions
from eigenvalues & eigenvectors.
The method is described as below.

The Eigenvalue Method for x′ = Ax in §5.7:

We consider A to be 2 × 2, then the general solution is x(t) = c1x1(t) + c2x2(t),
with the fundamental solutions x1(t),x2(t) found has follows.

• Distinct Real Eigenvalues. x1(t) = v1e
λ1t,x2(t) = v2e

λ2t

• Complex Eigenvalues. λ1,2 = p± qi. (suggestion: use an example to review
the method)

If v = a+ ib is an eigenvector associated with λ = p+ qi, then

x1(t) = ept(a cos qt− b sin qt), x2(t) = ept(b cos qt+ a sin qt).

Trajectories for the System x′ = Ax:

• attractor: A has distinct negative real eigenvalues.

• repeller: A has distinct positive real eigenvalues.

• saddle point: A has real eigenvalues of opposite sign.

• spiral point: A has complex conjugate eigenvalues with nonzero real parts.

• center: A has purely imaginary eigenvalues.

Applications to Differential Equations

Inner Product: An inner product on a vector space V is a function
that, to each pair of vectors u and v in V , associates
a real number ⟨u,v⟩ and satisfies the following axi-
oms, for all u,v, and w in V and all scalars c : (1)
⟨u,v⟩ = ⟨v,u⟩. (2) ⟨u+v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩. (3)
⟨cu,v⟩ = c⟨u,v⟩. (4)⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 if and
only if u = 0. A vector space with an inner product
is called an inner product space.

Length: The length (or norm) of a vector v is the scalar
∥v∥ =

√
⟨v,v⟩

Distance: The distance between u and v is ∥u− v∥.
Orthogonality: Vectors u and v are orthogonal if ⟨u,v⟩ = 0.

Inner Product Spaces, Length, and Orthogonality
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Definitions: - A set of vectors {u1, . . . ,up} in Rn is said to be an orthogonal
set if each pair of distinct vectors from the set is orthogonal, that
is, if ui · uj = 0 whenever i ̸= j.
- A set {u1, . . . ,up} is an orthonormal set if it is an orthogonal
set of unit vectors.

Properties: - If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in
Rn, then S is linearly independent and hence is a basis for the
subspace spanned by S.
- An m × n matrix U has orthonormal columns if and only if
UTU = I.
- Let U be an m×n matrix with orthonormal columns, and let x
and y be in Rn. Then (1) ∥Ux∥ = ∥x∥, (2) (Ux) · (Uy) = x · y,
(3) (Ux) · (Uy) = 0 if and only if x · y = 0.
- An orthogonal matrix is a real square matrix whose columns
and rows are orthonormal vectors. Equivalently, a matrix P is
orthogonal if its transpose is equal to its inverse: PT = P−1.

Orthogonal Sets

Theorem: (The Orthogonal Decomposition Theorem) Let W be a subspace
of Rn. Then each y in Rn can be written uniquely in the form

y = projW y + z

where projW y is in W and z is in W⊥. In fact, if {u1, . . . ,up} is
any orthogonal basis of W , then

projW y =
y · u1

u1 · u1
u1 + · · ·+ y · up

up · up
up

and z = y − projW y.
Theorem: (The Best Approximation Theorem) Let W be a subspace of Rn,

let y be any vector in Rn, and let projW y be the orthogonal pro-
jection of y onto W . Then projW y is the closest point in W to
y, in the sense that

∥y − projW y∥ < ∥y − v∥

for all v in W distinct from projW y. projW y is called the best
approximation to y by elements of W .

Orthogonal Projections

If A is m × n and b is in Rm, a least-squares solution of Ax = b is an x̂ in Rn

such that ∥b−Ax̂∥ ≤ ∥b−Ax∥ for all x in Rn.

The set of least-squares solutions of Ax = b coincides with the nonempty set of
solutions of the normal equations ATAx = ATb.

Least-Squares Problems

Given a basis {x1, . . . ,xp} for a nonzero subspace W of Rn, define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
x3 · v1

v1 · v1
v1 −

x3 · v2

v2 · v2
v2

...

vp = xp −
xp · v1

v1 · v1
v1 −

xp · v2

v2 · v2
v2 − · · · − xp · vp−1

vp−1 · vp−1
vp−1

Then {v1, . . . ,vp} is an orthogonal basis for W .
In addition, Span {v1, . . . ,vk} = Span {x1, . . . ,xk} for 1 ≤ k ≤ p.

The Gram-Schmidt Process

The QR Factorization: If A is an m × n matrix with linearly independent
columns, then A can be factored as A = QR, where
Q is an m×n matrix whose columns form an ortho-
normal basis for ColA and R is an n× n upper tri-
angular invertible matrix with positive entries on its
diagonal.

Remark: The matrix Q can be obtained from the Gram-
Schmidt Process. Notice that R = QTA since
UTU = I.

The QR Factorization

An inner product on Pn: Let t0, . . . , tn be distinct real numbers. For p
and q in Pn,
⟨p, q⟩ = p (t0) q (t0) + p (t1) q (t1) + · · · +
p (tn) q (tn)
defines an inner product on Pn.

An Inner Product on C[a, b]: For f, g in C[a, b],

⟨f, g⟩ =
´ b
a
f(t)g(t)dt

defines an inner product on C[a, b].

Examples of Inner Product Spaces Other Than Rn

A symmetric matrix is a matrix A such that AT = A.

Properties: - An n×n matrix A has n real eigenvalues, counting multiplicities.
- If A is symmetric, then any two eigenvectors from different ei-
genspaces are orthogonal.
- An n× n matrix A is orthogonally diagonalizable if and only if
A is a symmetric matrix.

Diagonalization of Symmetric Matrices
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