Review of Linear Algebra for the Final

Additional Notes Summarized by Yourself

You can fill in this empty block to summarize the course contents that are not listed in this file.

Reduced Row Echelon Form (RREF)

- A matrix is in Reduced Row Echelon Form if it satisfies the following 4 conditions
 - 1. All zero rows are at the bottom.
 - 2. The first non-zero entry of every non-zero row is a 1 (leading one).
 - 3. Leading ones go from left to right.
 - 4. All entries above and below any leading one are zero.

If a matrix satisfies only the first 3 conditions above then we say it is in Row Echelon Form (REF).

The Row Reduction Algorithm

- $\frac{\text{Step 1:}}{\text{The pivot position is at the top.}}$
- Step 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- Step 3: Use row replacement operations to create zeros in all positions below the pivot.
- Step 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1 to 3 to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.
- Step 5: Backward phase. Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

Steps 1-4 produce a matrix in row echelon form (REF). A fifth step produces a matrix in reduced row echelon form (RREF).

Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column, that is, if and only if an echelon form of the augmented matrix has no row of the form $\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$ with *b* nonzero.

If a linear system is consistent, then the solution set contains either

- (i) a unique solution, when there are no free variables, or
- (ii) infinitely many solutions, when there is at least one free variable.

Using Row Reduction to Solve a Linear System

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step ${\bf 3}$.
- 5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.

The Matrix Equation $A\mathbf{x} = \mathbf{b}$

An equation in the form of $A\mathbf{x} = \mathbf{b}$ is called a *matrix equation*.

<u>Theorem</u>: If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if **b** is in \mathbb{R}^m , the matrix equation

 $A\mathbf{x} = \mathbf{b}$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

 $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$ <u>Theorem</u>: Let A be an $m \times n$ matrix. Then the following statements are

- 1. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .

logically equivalent.

- 4. A has a pivot position in every row.
- 5. $T(\mathbf{x}) = A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m

Linear Combination and Span

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \ldots, c_p , the vector \mathbf{y} defined by $\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ is called a *linear combination* of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ with weights c_1, \ldots, c_p .

If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by $Span\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$

Homogeneous Linear Systems

- <u>Definition</u>: A system of linear equations is said to be homogeneous if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^m .
- <u>Theorem</u>: The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution \iff the equation has at least one free variable

Parametric Vector Form

 $\underbrace{\text{Summary:}}_{\text{form}} \text{ Writing a solution set (of a consistent system) in parametric vector}$

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution \mathbf{x} as a vector whose entries depend on the free variables, if any.
- 4. Decompose \mathbf{x} into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Linear Independence

<u>Definition</u>: A set $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ of vectors in \mathbb{R}^n is said to be *linearly independent* if the only solution to the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

is $c_1 = c_2 = \cdots = c_p = 0$. Otherwise the vectors are called *linearly dependant* (which also means that at least one of them can be written as a linear combination of the others).

<u>Theorems</u>: 1. A set containing only one vector \mathbf{v} is linearly independent if and only if \mathbf{v} is not the zero vector.

2. A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

3. An indexed set $S = {\mathbf{v}_1, \ldots, \mathbf{v}_p}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

4. If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

5. If a set $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Sums and Scalar Multiples

Let A, B, and C be matrices of the same size, and let r and s be scalars.

- A + B = B + A
- r(A+B) = rA + rB
- (A+B) + C = A + (B+C)
- (r+s)A = rA + sA
- $A + \mathbf{0} = A$
- r(sA) = (rs)A

Properties of Matrix Multiplication

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- A(BC) = (AB)C (associative law of multiplication)
- A(B+C) = AB + AC (left distributive law)
- (B+C)A = BA + CA (right distributive law)
- r(AB) = (rA)B = A(rB) for any scalar r
- $I_m A = A = A I_n$ (identity for matrix multiplication)

Transpose of a Matrix

<u>Definition</u>: Given an $m \times n$ matrix A, the *transpose* of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Properties:
$$-(A^T)^T = A$$
$$-(A+B)^T = A^T + B^T$$
$$- \text{ For any scalar } r, (rA)^T = rA^T$$
$$-(AB)^T = B^T A^T$$

Transformation, Domain, Codomain, Image and Range

A transformation (or function or mapping) T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a vector $T(\mathbf{x})$ in W.

The set V is called the *domain* of T, and W is called the *codomain* of T. For \mathbf{x} in V, the vector $T(\mathbf{x})$ in W is called the *image* of \mathbf{x} .

The set of all images $T(\mathbf{x})$ is called the *range* of T.

The *kernel* of such a T is the set of all u in V such that $T(\mathbf{u}) = \mathbf{0}$ (the zero vector in W).

Linear Transformations

<u>Definition</u>: A transformation (or mapping) T is *linear* if (1) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T; (2) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

<u>Properties</u>: If T is a linear transformation, then (1) $T(\mathbf{0}) = \mathbf{0}$ (2) $T(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p) = c_1T(\mathbf{v}_1) + \dots + c_pT(\mathbf{v}_p)$

Standard Matrix for the Linear Transformation

Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation. The standard matrix for the linear transformation T is

$$A = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

where \mathbf{e}_j is the j th column of the identity matrix in \mathbb{R}^n . A is the $m \times n$ matrix and

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n .

 $\begin{array}{c} \underline{\text{Examples:}} \\ \hline \\ \varphi: \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \\ \hline \\ \begin{bmatrix} 1 & 0 \end{bmatrix} \end{array}$

- Reflection through the
$$x_1$$
-axis: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Reflection through the line $x_2 = x_1$: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Onto and One-to-One Linear Transformations

<u>Onto:</u>	- A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each
	b in \mathbb{R}^m is the image of at least one x in \mathbb{R}^n . This is an
	existence question.
	- Let A be the standard matrix for T, then T maps \mathbb{R}^n onto
	\mathbb{R}^m if and only if the columns of A span \mathbb{R}^m (if and only if
	A has a pivot position in every row).
One-to-One:	- A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if each
	b in \mathbb{R}^m is the image of at most one x in \mathbb{R}^n . This is a
	uniqueness question.
	- T is one-to-one if and only if the equation $T(\mathbf{x}) = 0$ has
	only the trivial solution.
	- Let A be the standard matrix for T , then T is one-to-one
	if and only if the columns of A are linearly independent.
	v v I

Coordinate Systems

Suppose the set $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_p}$ is a basis for a subspace H. For each \mathbf{x} in H, the coordinates of \mathbf{x} relative to the basis \mathcal{B} are the weights c_1, \ldots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is called the coordinate vector of ${\bf x}$ (relative to ${\cal B}$) or the ${\cal B}\text{-coordinate vector of }{\bf x}.$

The Inverse of a Matrix

<u>Definition</u>: Given a square matrix A its *inverse* (if it exists) is the matrix denoted by A^{-1} such that $AA^{-1} = A^{-1}A = I$.

<u>Find A^{-1} :</u> (1) If the matrix is a 2 × 2 matrix, we use the formula

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$$

(2) For a matrix of higher dimensions, row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$ to get $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. If the matrix is not invertible, we will not get the identity on the left side after applying the row reduction process.

(3) We can also use the formula

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} = \frac{1}{\det A} \operatorname{adj} A$$

where C_{ji} is a cofactor of A. In particular, we have the (i, j)-entry of A^{-1} given by

$$(A^{-1})_{i,j} = \frac{1}{\det(A)}C_{j,i}$$

Properties: If A is an invertible $n \times n$ matrix, then

- then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- if B is $n \times n$ invertible, then so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$

•
$$A^T$$
 is also invertible and $(A^T)^{-1} = (A^{-1})^T$

• The Invertible Matrix Theorem (next box).

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.
- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. $\operatorname{Col} A = \mathbb{R}^n$.
- 15. rank A = n.
- 16. dim $\operatorname{Nul} A = 0$.
- 17. Nul $A = \{0\}$.
- 18. det $A \neq 0$.
- 19. The number 0 is not an eigenvalue of A.

		(letter spe	
Minor:	Given $A_{n \times n}$, the minor of entry ij is denoted by A_{ij} and is the determinant of the matrix obtained from A by removing row i and column j .	<u>Definition</u> :	A vector space is a non-empty set V of objects, called vectors, on which are defined two operations, called addition and multiplica- tion by scalars (real numbers), subject to the ten axioms listed
Cofactor:	$C_{ii} = (-1)^{i+j} \det A_{ii}$		below. The axioms must hold for all vectors $\mathbf{u} \mathbf{v}$ and \mathbf{w} in V and
Determinant:	Given an $n \times n$ matrix $A(n \ge 2)$		for all scalars c and d.
	$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$		1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V. 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
	by expanding along the i^{th} row.		3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$ 4. There is a zero vector 0 in V such that $\mathbf{u} + 0 = \mathbf{u}.$
	$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$		5. For each u in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.
	by expanding along the j^{th} column.		6. The scalar multiple of \mathbf{u} by c , denoted by $c\mathbf{u}$, is in V .
Properties:	Given an $n \times n$ matrix A ,		7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
			8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
	• if A has a zero row or zero column then $det(A) = 0$.		9. $c(d\mathbf{u}) = (cd)\mathbf{u}$.
	• if we get matrix B by interchanging two rows of A then $det(B) = -det(A)$.		10. $1\mathbf{u} = \mathbf{u}$.
		$\underline{\text{Examples}}$:	1. The spaces \mathbb{R}^n , where $n \geq 1$.
	• if we get matrix B by multipying one row of A by $k \neq 0$ then $\det(B) = k \det(A)$.		2. The set \mathbb{P}_n of polynomials of degree at most n , where $n \ge 0$. 3. The set $M_{m \times n}$ of all $m \times n$ matrices with real entries, where
	• if we get matrix B by adding a multiple of a row to another of matrix A then $det(B) = det(A)$		4. The set of all real-valued functions defined on a set \mathbb{D} .
	• $\det(kA) = k^n \det(A)$	Subspaces	
	• det $(A^T) = \det(A)$	<u>Definition</u> :	A subspace of a vector space V is a subset H of V that has three properties:
	• $\det(AB) = \det(A) \det(B)$		1. The zero vector of V is in H. 2. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v}
	• det $(A^{-1}) = \frac{1}{\det(A)}$		 in <i>H</i>, the sum u + v is in <i>H</i>. 3. <i>H</i> is closed under multiplication by scalars. That is, for each u in <i>H</i> and each scalar <i>c</i>, the vector <i>c</i>u is in <i>H</i>.
)	Examples:	 In every vector space V, the subsets {0} and V are subspaces. A line through the origin in R² or R³. A plane through the origin in R³. For example, the solutions

Dotorminon

Voctor Space

the origin in R³.
4. All polynomials in P_n such that p(a) = 0 for some fixed a ∈ R and positive integer n.
5. The set of all 3 × 3 symmetric matrices. Note we say an n × n

5. The set of all 3×3 symmetric matrices. Note we say an $n \times n$ matrix A is said to be symmetric if $A^T = A$. (Exercise 7 in the Lecture Notes §4.1).

to the homogeneous equation 3x + 4y + 5z = 0 is a plane through

– Subspaces ((continued)	Linearly	ly Independent Sets
Non-Exampl	 es: 1. A line in R² or R³ not containing the origin. 2. A plane in R³ not containing the origin. For example, the solutions to the non-homogeneous equation 3x+4y+5z = 6 is a plane not containing the origin in R³. It is not a subspace of R³. 3. The first quadrant in R². 4. All polynomials in P_n such that p(a) = 3 for some fixed a ∈ R and positive integer n. 	Definitio	ion: A set $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ of vectors in a vector space V is said to be linearly independent if the only solution to the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = 0$ is $c_1 = c_2 = \dots = c_p = 0$. Otherwise the vectors are called <i>linearly</i> dependent (which also means that at least one of them can be written as a linear combination of the others).
Basis Dime	ension	– Eigenva	alues and Eigenvectors
<u>Basis</u> : <u>Dimension</u> :	A basis for a subspace H of a vector space V is a linearly independent set in H that spans H . If a vector space V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V , written as dim V , is the number of vectors in a basis for V .	Definition Eigensp	 <u>ion</u>: A scalar λ is called an <i>eigenvalue</i> of A if A - λI = 0 (<i>characteristic equation</i>). An <i>eigenvector</i> associated with the eigenvalue λ is a nonzero vector v such that (A - λI)v = 0. <u>pace</u>: Given a particular eigenvalue λ of the n by n matrix A, the set E = {v : (A - λI)v = 0} is called the <i>eigenspace</i> of A associated with λ.
Col A, Nul A, Col A:	 Row A The column space of a matrix A is the set Col A of all linear combinations of the columns of A. Col A is a subspace of ℝ^m if A is m × n. The pivot columns of a matrix A form a basis for the column space of A. rank A = dim Col A The null space of a matrix A is the set Nul A of all solutions of the homogeneous equation Ax = 0. To test whether a given vector v is in Nul A, just compute Av 	Propert	 ties: - If Ax = λx, then A^kx = λ^kx for any positive integer k. So λ^k is an eigenvalue for A^k. Check Practice Problems # 2 on Page 279. Solutions are on Page 282. - If Ax = λx, then sλ is an eigenvalue of sA for any real number s. - The eigenvalues of a triangular matrix are the entries on its main diagonal. - If v₁,, v_r are eigenvectors that correspond to distinct eigenvalues λ₁,, λ_r of an n × n matrix A, then the set {v₁,, v_r} is linearly independent.
<u>Row A:</u>	 to see whether Av is the zero vector. To find a basis for Nul A, we solve the equation Ax = 0 and write the solution for x in parametric vector form. The vectors in the parametric form give us a basis for Nul A. The nullity of a matrix A is the dimension of its NulA. The set of all linear combinations of the row vectors of A is called the row space of A, and is denoted by Row A. Row A is a subspace of Rⁿ if A is m × n. If two matrices A and B are row equivalent, then their row space space are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B. Row A = Col A^T 	The Ch Let A be <u>Remark</u>	 haracteristic Polynomial of a 2 × 2 matrix e a 2 × 2 matrix, then its characteristic polynomial is λ² - tr(A)λ + det(A) k: Recall the <i>trace</i> of a square matrix A is the sum of the diagonal entries in A and is denoted by tr A.
Rank Thm:	- dim Row $A = \dim \operatorname{Col} A = \operatorname{rank} A$ rank A + nullity A = number of columns in A		

- Similarity	Applications to Differential Equations
<u>Definition</u> : If A and B are $n \times n$ matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$, or, equivalently,	Constant Coeff. Homogeneous: $\mathbf{x}' = A\mathbf{x}$
$\begin{array}{l} A = PBP^{-1}.\\ \hline \\ Properties: & - Any square matrix A is similar to itself. (Reflexivity)\\ & - A is similar to B if and only if B is similar to A. (Symmetry)\\ & - If A is similar to B and B is similar to C, then A is similar to C. (Transitivity)\\ \end{array}$	Solution: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \cdots$, where \mathbf{x}_i are fundamental solutions from eigenvalues & eigenvectors. The method is described as below.
 If n × n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities). If A and B are similar, then det A = det B (Example 4 in §5.2). Similar matrices have the same rank. Warnings: It is not true that if two matrices have the same eigenvalues implies they are similar. Check the Lecture Notes §5.2 for an example. Similarity is not the same as row equivalence. Row operations on a matrix usually change its eigenvalues. 	 The Eigenvalue Method for x' = Ax in §5.7: We consider A to be 2 × 2, then the general solution is x(t) = c₁x₁(t) + c₂x₂(t), with the fundamental solutions x₁(t), x₂(t) found has follows. Distinct Real Eigenvalues. x₁(t) = v₁e^{λ₁t}, x₂(t) = v₂e^{λ₂t} Complex Eigenvalues. λ_{1,2} = p ± qi. (suggestion: use an example to review the method) If v = a + ib is an eigenvector associated with λ = p + qi, then x₁(t) = e^{pt}(a cos qt - b sin qt), x₂(t) = e^{pt}(b cos qt + a sin qt).
- Diagonalization	$\mathbf{x}_{\mathbf{I}}(t) = t (\mathbf{a} \cos qt \mathbf{b} \sin qt), \ \mathbf{x}_{\mathbf{Z}}(t) = t (\mathbf{b} \cos qt + \mathbf{a} \sin qt).$
<u>Definition</u> : A square matrix A is said to be <i>diagonalizable</i> if A is simi-	Trajectories for the System $\mathbf{x}' = A\mathbf{x}$:
lar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some	• attractor : A has distinct negative real eigenvalues.
Properties: - An $n \times n$ matrix A is diagonalizable if and only if A has	• repeller : A has distinct positive real eigenvalues.
n linearly independent eigenvectors.	• saddle point: A has real eigenvalues of opposite sign.
- An $n \times n$ matrix with n distinct eigenvalues is diagonalizable	a grinel reint. A has complex conjugate signaruluss with rengene real rests
- A symmetric matrix is always diagonalizable.	• spiral point: A has complex conjugate eigenvalues with honzero real parts.
Diagonalizing A: Check Example 3 in Lecture Notes 5.3 as an exercise.	• center : A has purely imaginary eigenvalues.
Step 1. Find the eigenvalues of AStep 2. Find n linearly independent eigenvectors of A if Ais $n \times n$. (A is not diagonalizable if this step fails.Step 3. Construct P with the eigenvectors found in Step 2.Step 4. Construct the diagonal matrix D with the the cor- responding eigenvalues from columns of P.Warnings:- When A has fewer than n distinct eigenvalues, it is still possible to diagonalize A. (Example 3 in Lecture Notes §5.3)- Diagonalizable \neq Invertible. For example,- Invertible \neq Diagonalizable. For example,- Invertible \neq Diagonalizable. For example,- Diagonalizable \neq no zero eigenvalues. For example,- Diagonalizable \neq no zero eigenvalues. For example,- Diagonalizable \neq no zero eigenvalue.	Inner Product Spaces, Length, and OrthogonalityInner Product:An inner product on a vector space V is a function that, to each pair of vectors u and v in V, associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ and satisfies the following axi- oms, for all u, v, and w in V and all scalars $c : (1)$ $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$. (2) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$. (3) $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (4) $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = 0$. A vector space with an inner product is called an <i>inner product space</i> .Length:The length (or norm) of a vector v is the scalar $\ \mathbf{v}\ = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ Distance:The distance between u and v is $\ \mathbf{u} - \mathbf{v}\ $.Orthogonality:Vectors u and v are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
$\begin{bmatrix} 0 & 0 \end{bmatrix}$ is diagonalizable and 0 is an eigenvalue.	

Orthogonal Sets

Definitions:	 A set of vectors {u₁,, u_p} in ℝⁿ is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if u_i · u_j = 0 whenever i ≠ j. A set {u₁,, u_p} is an orthonormal set if it is an orthogonal set of unit vectors.
Properties:	 If S = {u₁,, u_p} is an orthogonal set of nonzero vectors in Rⁿ, then S is linearly independent and hence is a basis for the subspace spanned by S. An m × n matrix U has orthonormal columns if and only if U^TU = I.
	- Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n . Then (1) $ U\mathbf{x} = \mathbf{x} , (2) (U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y},$ (3) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$
	(5) $(O \mathbf{x}) + (O \mathbf{y}) = 0$ if and only if $\mathbf{x} + \mathbf{y} = 0$. - An orthogonal matrix is a real square matrix whose columns and rows are orthonormal vectors. Equivalently, a matrix P is orthogonal if its transpose is equal to its inverse: $P^T = P^{-1}$.
Orthogona	l Projections
Theorem:	(The Orthogonal Decomposition Theorem) Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form
	$\mathbf{y} = \operatorname{proj}_W \mathbf{y} + \mathbf{z}$
	where $\operatorname{proj}_W \mathbf{y}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis of W , then
	$\operatorname{proj}_W \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$
<u>Theorem:</u>	and $\mathbf{z} = \mathbf{y} - \operatorname{proj}_W \mathbf{y}$. (The Best Approximation Theorem) Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\operatorname{proj}_W \mathbf{y}$ be the orthogonal pro- jection of \mathbf{y} onto W . Then $\operatorname{proj}_W \mathbf{y}$ is the closest point in W to \mathbf{y} , in the sense that
	$\ \mathbf{y} - \operatorname{proj}_W \mathbf{y}\ < \ \mathbf{y} - \mathbf{v}\ $
	for all \mathbf{v} in W distinct from $\operatorname{proj}_W \mathbf{y}$. $\operatorname{proj}_W \mathbf{y}$ is called the best approximation to \mathbf{y} by elements of W .
Loost Saus	nes Duchlems

If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^m , a *least-squares solution* of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n .

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$
Then $\{\mathbf{v}_{1}, \dots, \mathbf{v}_{p}\}$ is an orthogonal basis for W .
In addition, Span $\{\mathbf{v}_{1}, \dots, \mathbf{v}_{k}\} =$ Span $\{\mathbf{x}_{1}, \dots, \mathbf{x}_{k}\}$ for $1 < k < p$.

The QR Factorization

The QR Factorization:	If A is an $m \times n$ matrix with linearly independent
	columns, then A can be factored as $A = QR$, where
	Q is an $m \times n$ matrix whose columns form an ortho-
	normal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper tri-
	angular invertible matrix with positive entries on its
	diagonal.
Remark:	The matrix Q can be obtained from the Gram-
	Schmidt Process. Notice that $R = Q^T A$ since
	$U^T U = I.$

Examples of Inner Product Spaces Other Than \mathbb{R}^n

 $\begin{array}{ll} \underline{\mathrm{An\ inner\ product\ on\ }\mathbb{P}_n:} & \mathrm{Let\ }t_0,\ldots,t_n \ \mathrm{be\ distinct\ real\ numbers.\ For\ }p \\ & \mathrm{and\ }q \ \mathrm{in\ }\mathbb{P}_n, \\ & \langle p,q\rangle \ = \ p\ (t_0)\ q\ (t_0)\ + \ p\ (t_1)\ q\ (t_1)\ + \ \cdots \ + \\ & p\ (t_n)\ q\ (t_n) \\ & \mathrm{defines\ an\ inner\ product\ on\ }\mathbb{P}_n. \end{array}$

defines an inner product on C[a,

Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that $A^T = A$.

 $\label{eq:properties: optimized on the set of the set$

```
- An n\times n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.
```